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• Background and Aims Pyroloids, forest sub-shrubs of the Ericaceae family, are an important model for their mixo-
trophic nutrition, which mixes carbon from photosynthesis and from their mycorrhizal fungi. They have medical uses 
but are difficult to cultivate ex situ; in particular, their dust seeds contain undifferentiated, few-celled embryos, whose 
germination is normally fully supported by fungal partners. Their germination and early ontogenesis thus remain elusive.
• Methods An optimized in vitro cultivation system of five representatives from the subfamily Pyroloideae was 
developed to study the strength of seed dormancy and the effect of different media and conditions (including light, 
gibberellins and soluble saccharides) on germination. The obtained plants were analysed for morphological, ana-
tomical and histochemical development.
• Key Results Thanks to this novel cultivation method, which breaks dormancy and achieved up to 100 % ger-
mination, leafy shoots were obtained in vitro for representatives of all pyroloid genera (Moneses, Orthilia, Pyrola 
and Chimaphila). In all cases, the first post-germination stage is an undifferentiated structure, from which a root 
meristem later emerges, well before formation of an adventive shoot.
• Conclusions This cultivation method can be used for further research or for ex situ conservation of pyroloid 
species. After strong seed dormancy is broken, the tiny globular embryo of pyroloids germinates into an inter-
mediary zone, which is functionally convergent with the protocorm of other plants with dust seeds such as orchids. 
Like the orchid protocorm, this intermediary zone produces a single meristem: however, unlike orchids, which 
produce a shoot meristem, pyroloids first generate a root meristem.

Key words: Pyrola, Monotropa, Ericaceae, seed germination, in vitro culture, Chimaphila, protocorm, orchid, 
convergent evolution, seed dormancy, mixotrophy, Moneses.

INTRODUCTION

Mycorrhiza is a worldwide symbiosis of most plants (Smith 
and Read, 2008). Usually, plants provide photosynthates in 
exchange for fungal mineral nutrients (van der Heijden et al., 
2015). However, mycorrhizal exchange may be less reciprocal, 
and perhaps exploitative, in mycoheterotrophic plants that de-
rive carbon resources from their mycorrhizal fungi (Leake, 
1994). Mycoheterotrophic plants evolved independently in 
various plant lineages (Merckx, 2013), and beyond full myco-
heterotrophs, which are achlorophyllous, some green species 
display a mixed strategy, obtaining carbon from both mycor-
rhizal fungi and their own photosynthesis, so-called mixo-
trophy (Selosse and Roy, 2009). There are two non-exclusive 
mixotrophic conditions (Merckx, 2013): some species are 
mixotrophic at adulthood, while other species germinate in 
a mycoheterotrophic way, before switching to autotrophy or 
mixotrophy during ontogeny (such as orchids; Dearnaley et al., 
2016; Selosse et al., 2016; Těšitel et al., 2018).

Little is known about the biology of mycoheterotrophic and 
mixotrophic plants, perhaps due to the difficulty of studying 
them (Merckx, 2013). The only cultivable group of mixotrophic 
plants is the orchid family, although many of them have so far 
escaped cultivation (Rasmussen, 1995). For this reason, orchids 
are the most explored mixotrophic models, but unfortunately 
it is largely unknown which results obtained for them can be 
generalized to other mixotrophic plants. Developing cultivation 
protocols for other mycoheterotrophic or mixotrophic plants is 
therefore urgently needed to understand general mechanisms 
connected with mycoheterotrophy.

Within Ericaceae, the subfamily Pyroloideae (hereafter 
pyroloids) comprises initial mycoheterotrophs that develop, 
depending on the species, into auto- or mixotrophic adults 
(Tedersoo et  al., 2007; Matsuda et  al., 2012; Hynson et  al., 
2013a), with the exception of one completely mycohetero-
trophic species (Hynson and Bruns, 2009). This similarity to 
orchids is an evolutionary convergence (Tedersoo et al., 2007; 
Byng et al., 2016; Lallemand et al., 2016) and it is therefore 
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interesting to compare adaptations of both groups to myco-
heterotrophy. Pyroloids encompass about 40 sub-shrub spe-
cies divided into four genera, mostly distributed in northern 
temperate and boreal ecosystems (Takahashi, 1993; Liu et al., 
2010), and are of medicinal interest, mostly in Asia (e.g. Ma 
et al., 2014; Wang et al., 2014).

The seeds of pyroloids consist of oval, central living tis-
sue surrounded by a coat of dead cells called a testa (Fürth, 
1920; Christoph, 1921; Lück, 1941; Pyykkö, 1968; Takahashi, 
1993). Despite the fact that the oval living part seems to be 
anatomically homogeneous, it is composed of a one-layered 
endosperm and triploid nutritive tissue of 40–50 cells surround-
ing a smaller embryo inside (Hofmeister, 1858; Fürth, 1920; 
Christoph, 1921; Pyykkö, 1968). A similar seed structure was 
observed in the related, mycoheterotrophic genus Monotropa, 
where the embryo consists of only 2–3 cells (Olson, 1993) to 
5–9 cells (Goebel, 1887) in addition to the endosperm, although 
minute seeds evolved independently in this Ericaceae genus 
(Lallemand et al., 2016). The embryo of pyroloids is larger, with 
eight or 16 cells (Goebel, 1887) to 30 cells (Christoph, 1921). 
Similarly to Monotropa, the living part of the seed contains 
limited reserves of lipids and proteins (Fürth, 1920; Christoph, 
1921; Lück, 1940). Other mycotrophic plants exhibit a similar 
seed structure, but, for example, orchids lack endosperm, and 
the only living part of the seed is undifferentiated globular em-
bryo (Arditti and Ghani, 2000).

Post-germination development of such seeds in pyroloids 
with an undifferentiated embryo has attracted attention for a 
long time. First, researchers searched for seedlings in nature 
(Irmish, 1855; Velenovský, 1892, 1905; Fürth, 1920), albeit 
with limited success. They found only older seedlings, which 
revealed that a small root-like structure grows into an exten-
sively branched structure which is formed before the first shoot 
emerges (Irmish, 1855; Velenovský, 1892; Fürth, 1920). In con-
trast, orchids, which also start mycoheterotrophic development 
from an undifferentiated embryo, first form a specific structure 
called a protocorm, from which shoots and roots later develop 
(Rasmussen, 1995; Dearnaley et al., 2016). This raised the fol-
lowing three questions. Are the structures observed in germi-
nating pyroloids true roots? How does this root-like structure 
develop from a tiny undifferentiated embryo? What is its rela-
tionship to a protocorm?

Many attempts have been made to answer these questions, 
but with only ambiguous results to the date. Velenovský (1892, 
1905) believed that this below-ground structure is ‘neither a root 
nor a stem’ and called it a ‘prokaulom’, while Christoph (1921) 
suggested that this structure is a root. Later, Lihnell (1942) and 
Copeland (1947) carried out the same anatomical analyses and 
found a typical root anatomical structure, where the radial vas-
cular bundle is diarch, rarely triarch (i.e. has two or rarely three 
xylem strands). The middle layer of the root called the cortex 
is made of 3–4 (or rarely more) cell layers from which the in-
nermost layer forms the endodermis (Lihnell, 1942; Copeland, 
1947). The outermost root layer, the epidermis, is one layered 
and consists of isodiametric cells. Lateral branches grow from 
the outer layer of the stele (Lihnell, 1942).

The method of burying seed packets at natural sites yields 
pyroloid seedlings easily, but the anatomical structure of such 
seedlings has not been studied in detail. These structures, 
called ‘root-like structures’ (Hashimoto et al., 2012; Johansson 

and Eriksson, 2013), live heterotrophically below-ground for 
months, if not years (Lihnell, 1942; Hynson et  al., 2013a; 
Johansson et al., 2017).

Other researchers tried to germinate pyroloid seeds in 
vitro axenically (Christoph, 1921; Lück, 1940; Lihnell, 1942) 
or symbiotically (Fürth, 1920; Lück, 1941; Lihnell, 1942). 
Germination was achieved, although the results were ‘mostly 
uneven, not very consistent’ (Lihnell, 1942) and the seed-
lings usually stopped growing very soon after germination 
(Christoph, 1921; Francke, 1934; Lück, 1940, 1941), some-
times being only a ‘few tenths of a mm long’ (Christoph, 1921). 
Similar tiny seedlings, which ceased growth, were obtained for 
Monotropa (Francke, 1934). The best results were achieved by 
Lihnell (1942) and yielded a few branched root-like seedlings 
of Pyrola rotundifolia.

In these studies, observing different pyroloids, a polarized 
cone-shaped structure resembling a root with large epidermal 
cells grows from the tiny globular embryo (Christoph, 1921; 
Lück, 1940, 1941; Lihnell, 1942). At this stage, the seedling 
breaks the testa and forms an approx. 1 mm long roll-shaped 
structure (Lihnell, 1942), whose central cells undergo elong-
ation (Lück, 1941). At this point, growth usually ceases (Lück, 
1940; Lihnell, 1942). Seedlings rarely grow further, producing 
a rod-shaped stage, where vessels start differentiation (Lihnell, 
1942) and, soon after, a root cap. Then, the seedling becomes 
darker, possibly because of the accumulation of tannins (e.g. 
Holm, 1898; Christoph, 1921; Lück, 1940; Lihnell, 1942). 
Lihnell (1942) showed that such older seedlings have the struc-
ture of a root and their illumination does not lead to the forma-
tion of chlorophyll. Shoots were never produced in vitro.

Growth suddenly stopped in all in vitro experiments 
(Christoph, 1921; Lück, 1940, 1941; Lihnell, 1942), which 
raised the question of the ideal conditions for in vitro growth. 
Germination usually started 4–8  months after sowing (Lück, 
1940, 1941; Lihnell, 1942) and it was difficult to keep the cul-
tures moist for such a long period (Lihnell, 1942). It is also 
hard to say if a specific experiment was really axenic, as the 
authors themselves admitted (for example, Christoph, 1921, 
discussed whether worms were the reason for the failure of cul-
tivation), and in symbiotic cultures it was not clear whether the 
fungus really formed symbiosis or not (Lihnell, 1942; indeed, 
sometimes ‘symbiotic’ seedlings grew away from the fungus). 
Moreover, in vitro cultivation media often contained substances 
of variable composition, such as potato extract, yeast extract, 
malt, peptone or even humus and soil extracts (Christoph, 1921; 
Lück, 1941; Lihnell, 1942). Previous results from in vitro cul-
tures are therefore based on a few plants only, and do not in-
dicate cultivation conditions that are ideal for more detailed 
observation.

Possible seed dormancy was also discussed. Christoph 
(1921) noticed that it is difficult to soak pyroloid seeds in 
water, indicating impermeability of the seed coat. Seeds dis-
infected with calcium hypochlorite solution showed the best 
germination after the longest bleaching time (15 and 30 min; 
Lihnell, 1942). Lihnell (1942) and Lück (1941) suggested that 
some ‘water-soluble substances’ have an inhibitory effect on 
germination, and Harley (1959) hypothesized that some sub-
stances could be removed by soaking in solution. Although dor-
mancy in minute seeds may seem unexpected, long bleaching 
of seeds enhances germination in many orchids (e.g. Burgeff, 
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1936; Rasmussen, 1992, 1995) probably because hypochlorite 
solutions have a high pH and strong oxidative effects on a wide 
range of compounds, which could break impermeable seed 
coats (Arditti, 1967; Rasmussen, 1995; Zeng et al., 2014). In 
some hardly germinating orchid species, pre-treatment with a 
weak H2SO4 solution enhances germination, probably ensur-
ing stronger degradation of seed coats (e.g. Malmgren, 1993; 
Ponert et al., 2013; Malmgren and Nyström, 2018). However, 
the mechanisms are unclear in orchids, and strong differences 
exist between species. Dormancy clearly requires further study 
in pyroloid seeds.

To summarize, no reliable protocol for in vitro germination 
of pyroloids exists and their early ontogenetic development 
remains elusive. We therefore sought to develop an efficient 
protocol for in vitro culture. We successfully report early steps 
of the post-germination development from undifferentiated em-
bryo to leafy plant, in terms of storage compounds, and mor-
phological and anatomical development, which enabled us 
clearly to answer the long-standing above-mentioned questions 
about the nature of root-like structures of pyroloid seedlings, 
their development from a tiny undifferentiated embryo and 
their relationship to a protocorm.

MATERIALS AND METHODS

Plant material

We selected five European species as representatives of all four 
genera of the subfamily Pyroloideae (Pyrola media, Pyrola 
minor, Orthilia secunda, Moneses uniflora and Chimaphilla 
umbellata; Supplementary Data Table S1). To compare these 
with another subfamily of Ericaceae where minute seeds 
and mycoheterotrophic germination independently evolved 
(Freudenstein et  al., 2016; Lallemand et  al., 2016), we used 
Monotropa uniflora from the Monotropoideae (Supplementary 
Data Table  S1). Ripe capsules were collected, dried at room 
temperature, and extracted seeds were stored in the dark and in 
dry conditions at +4 °C (Supplementary Data Table S1).

Cultivation media

To find a suitable cultivation medium for germination and 
growth, we tested nine media originally designed for orchid in 
vitro culture (Supplementary Data Table S2). All media con-
tained 0.7 % agar (w/v, Sigma-Aldrich) and 1–3 % sucrose 
(Supplementary Data Table S2). After the pH was adjusted to 
5.8 using NaOH, media were autoclaved at 144 kPa, 121  °C 
(Tuttnauer 2540 EK-N) for 20 min and poured into 5 cm plastic 
Petri dishes, unless otherwise indicated. Medium Knudson C 
with activated charcoal (Sigma-Aldrich) was used for all sub-
sequent experiments, unless otherwise indicated. Activated 
charcoal is used to improve germination and growth of orchids 
and slow-growing tissue cultures generally, perhaps due to its 
ability to adsorb toxic products of plant metabolism (van Waes, 
1985; Thomas, 2008). To test the effect of different soluble sac-
charides that could mimic the carbon provided by the fungi in 
natural situations, sucrose was excluded or replaced with the 
monosaccharide 100 mm glucose or the disaccharide 50 mm 

sucrose or trehalose. To test the effect of gibberellins, 0.01, 0.1 
or 1 mg L–1 GA3 (Sigma-Aldrich) was added to the medium 
before autoclaving.

Seed disinfection and sowing

Seeds were disinfected in 5 mL syringes and sown as a sus-
pension in sterile deionized water as described previously 
(Ponert et al., 2011, 2013), but the application times of disin-
fection solutions of H2SO4 and Ca(OCl)2 were modified in a 
fully factorial design to find the proper seed treatment. All dis-
infection treatments were pre-incubated in 70 % ethanol for 
5 min, washed three times with deionized water (<0.2 μm cm–1), 
treated with 2 % H2SO4 for 10 min or not, treated with Ca(OCl)2 
solution for 5, 10 or 15 min, and finally washed three times with 
sterile deionized water. Ca(OCl)2 solution was prepared by dis-
solving 20 g of chlorinated lime (Kittfort, Czech Republic) in 
100  mL of deionized water, filtering through filter paper and 
adding a drop of Tween-20. For all subsequent experiments, we 
selected the most efficient treatment: 70 % ethanol for 5 min, 
washed three times with deionized water, 2 % H2SO4 for 10 min, 
Ca(OCl)2 solution for 10 min, washed three times with sterile 
deionized water. Seven Petri dishes sealed with air-permeable 
foil (Parafilm M) were prepared for each experimental treatment.

Cultivation conditions

Because seeds ripen late in the season, all cultures were incu-
bated in the dark at 4 °C for 3 months after sowing to simulate 
winter, and then transferred to the dark at 20  °C, except for 
experiments where the effect of light or the cold stratification 
period was tested (see below). Cultures were observed every 
2 weeks using a Krüss, MSZ 5400 Stereo Zoom Microscope 
(magnification ×40) and an Olympus Provis AX70 microscope 
for higher magnification. The germination rate was counted 
three times after the end of cold stratification, at 30, 60 and 
90 d. The last count (the third; after 90 d at 20 °C) was used to 
determine the total germination rate, because no further ger-
mination was observed. To count the germination rate, seeds 
without an embryo or with an obviously undeveloped embryo 
were excluded and well-developed seeds with broken testa were 
regarded as germinated seeds (Supplementary Data Fig. S1). To 
estimate seedling size in selected experiments, the total length 
of all branches of each seedling was measured from pictures 
taken with a Nikon D7000 + Micro Nikkor 55/2.8 using ImageJ 
1.6.0_24 software.

To study the establishment of shoots in detail, we used 
approx. 3–5 mm long seedlings of P. minor pre-cultivated on 
Knudson C medium (Supplementary Data Table  S2) for 60 
d after transfer to 20  °C. Each seedling (n  =  22) was trans-
planted to an individual 9  cm Petri dish with BM-1 medium 
(Supplementary Data Table S2). Pictures of plants were taken 
every 10 d. Plants with established shoots were continuously 
collected for anatomical analyses.

Plants with growing etiolated shoots were transferred to 
light (16  h light/8  h dark) and cultivated for the next month 
to produce green leafy shoots. Plants with green shoots were 
deflasked, washed with water and potted in a mixture of coarse 
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expanded perlite, fine pumice gravel, fine pine bark and loamy 
soil (1:1:1:2) in clay pots. Pots were sealed in polyethylene 
bags to keep air humidity high and were kept on a windowsill 
at 25 °C in moderate light.

Anatomical analysis

Plant material (seeds and seedlings of P. minor) was fixed in 
4 % formaldehyde in phosphate buffer (0.1 m, pH 7.1). Selected 
samples were embedded in paraplast after dehydration using 
an ethanol–butanol series (for details, see Soukup and Tylová, 
2014). Sections (10  μm) were prepared using a Leica 2155 
microtome and collected on microscope slides coated with alum 
gelatine adhesive. Cryosections were prepared on a Shandon 
cryomicrotome. Hand sections were prepared on a Leica hand 
microtome. For whole-mount preparations, samples were grad-
ually equilibrated in 65 % glycerol and mounted in NaI-based 
clearing solution of high refractive index (Soukup and Tylová, 
2014). Histochemical tests involved staining with safranin 
O (2 h incubation) and Fast Green FCF (2 min). Lipids were 
detected with Sudan Red 7B (1 h) according to Brundrett et al. 
(1991). Proteins were stained with Ponceau 2R in 2 % acetic 
acid (10 min) and Azur II (10 s) according to Gutmann et al. 
(1996). Detection of starch involved staining with Lugol solu-
tion. Observations were made with an Olympus BX51 micro-
scope (Olympus Corp., Tokyo, Japan) equipped with an Apogee 
U4000 digital camera (Apogee Imaging Systems, Inc., Roseville, 
CA, USA) or with a Zeiss LSM 880 confocal microscope.

Endogenous starch HPLC analysis

To confirm the presence of starch in seedlings, we character-
ized the endogenous saccharide spectrum of selected pyroloids. 
Six-month-old (including the period of cold stratification) seed-
lings of Moneses uniflora, O. secunda and P. minor (n = 3 for 
each species) cultivated on BM-1 medium were collected in li-
quid nitrogen. Soluble carbohydrates were extracted following 
the protocol of Kubeš et al. (2014).

The pellets left after soluble saccharide extraction were 
carefully washed with Milli-Q ultrapure water (sonicated 
in 1 mL of water for 15 min, centrifuged at 14 000 rpm for 
15  min and the supernatant removed) and used for starch 
analysis. Starch was enzymatically degraded by α-amylase 
(Sigma-Aldrich) and amyloglucosidase (Sigma-Aldrich) fol-
lowing the protocol of Steinbachova-Vojtiskova et al. (2006), 
and the glucose content was quantified with the HPLC system 
described above, except for the use of an IEX Ca form 8 μm 
column in this case.

Data analysis

Statistical analyses were performed using statistical soft-
ware R 3.2.3 (R Core Team, 2015). The normality of data was 
tested using the Shapiro–Wilk test (Shapiro and Wilk, 1965) 
and homogeneity of variances was tested using the Bartlett 
test (Bartlett, 1937). Differences between the measurements 
were statistically tested with analysis of variance (ANOVA), 

followed by the Tukey–Kramer test (Kramer, 1956) for data 
with a normal distribution and the Kruskal–Wallis test (Kruskal 
and Wallis, 1952), followed by pairwise comparisons using 
Wilcoxon’s rank-sum test for data that did not have normal dis-
tribution. To compare the effects of different disinfectants on 
seed germination, we used two-way ANOVA, followed by a 
Tukey–Kramer test.

RESULTS

Effect of seed disinfection

It turned out to be impossible to sow non-disinfected seeds in vitro 
because of overwhelming contamination (data not shown). The 
highest germination rate of all tested species was reached after 
H2SO4 treatment and the effect of H2SO4 was significant in all 
tested species (P. minor, F1,24 = 193.96, P = 5.4 × 10–13; Moneses 
uniflora, F1,40 = 8.23, P = 0.0065; O.  secunda, F1,23 = 24.32, 
P = 5.5 × 10–5) except for C. umbellata (F1,28 = 0.06, P = 0.8; 
Fig.  1). The effect of Ca(OCl)2 was significant in P.  minor 
(F2,24 = 57.42, P = 7.1 × 10–10) and O. secunda (F1,23 = 3.79, 
P  =  0.038), but the optimal duration of disinfection differed 
between these taxa. Longer incubation in Ca(OCl)2 strongly 
promoted germination of P. minor, but slightly inhibited ger-
mination of O. secunda (Fig. 1). Moneses uniflora germination 
was also higher after longer incubation in Ca(OCl)2, especially 
after the pre-treatment with H2SO4 (Fig. 1B), but the effect was 
not significant (F2,40 = 2.13, P = 0.13). The interaction between 
the effects of H2SO4 and Ca(OCl)2 was significant for P. minor 
(F2,24 = 35.97, P = 6.0 × 10–8) and for O. secunda (F1,23 = 4.05, 
P = 0.031) only.

Effect of different media

Optimal media differed between species (Fig.  2A–C). 
Generally, the highest germination rates were observed on the 
media BM-1 (with or without activated charcoal), DS and MoN 
(Fig. 2; Supplementary Data Fig. S2). Media 1/4-2, Knudson 
C and Murashige and Skoog (MS) allowed slightly lower ger-
mination generally (Fig.  2; Supplementary Data Fig.  S2). 
Surprisingly, few seedlings of C.  umbellata germinated on 
Knudson C medium [χ2

(7)  =  8.45, P  =  0.29; Supplementary 
Data Fig. S3B]. The best medium for germination of P. minor 
was BM-1 (with or without activated charcoal), with a ger-
mination rate of almost 100 % [χ2

(8) = 32.59, P = 7.29 × 10–5; 
Fig. 2A]. For Moneses uniflora, the highest germination rates 
were achieved on media BM-1 and DS [χ2

(5) = 7.34, P = 0.20; 
Fig. 2B]. Orthilia secunda germinated on all media tested; how-
ever, after longer incubation, the highest germination rate was 
achieved on BM-1 medium without activated charcoal (F7,41 = 
3.21, P = 0.0083; Fig. 2C).

Media also differed in their suitability for seedling growth 
in a more or less similar way (Fig.  2D–F). We were unable 
to compare the effects of the different media on C.  umbel-
lata growth because few seedlings developed on Knudson 
C medium. The largest seedlings of P.  minor developed on 
BM-1 medium (with or without activated charcoal) and on DS 
medium, although the differences between treatments were 
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not significant (F7,16 = 0.984, P = 0.48; Fig. 2D). The largest 
seedlings of Moneses uniflora developed on the media DS and 
BM-1 without activated charcoal (F6,15 = 21.76, P =1.32 × 10–6; 
Fig.  2E). The largest seedlings of O.  secunda developed on 
MoN medium followed by BM-1 medium with activated char-
coal (F7,17 = 14.54, P = 1.19 × 10–5; Fig. 2F).

Effect of light

The germination of both tested species (P.  minor and 
O.  secunda) was inhibited by light (16/8  h photoperiod; 
Supplementary Data Fig.  S4A, B). For O.  secunda, this dif-
ference was significant [Supplementary Data Fig.  S4B; 
χ2

(1)  =  5.4; P  =  0.02 in the second month; only one plate in 
the third month because light cultures became contaminated]. 
For P. minor, a similarly small proportion of seeds germinated 
after the first month in both treatments, and further germination 

was only slightly lower in the light (differences not signifi-
cant; F1,8 = 0.058, P = 0.82; Supplementary Data Fig. S4A). 
However, after another 6  months of cultivation, seedlings in 
light did not grow, while the seedlings in the dark grew and 
produced many branches, and even some buds and first shoots 
(data not shown). Interestingly, seedlings cultivated in light dis-
played a reddish colour (Fig. 3B).

Effect of gibberellic acid and selected soluble saccharides

We found little effect of GA3 on germination of the tested spe-
cies, namely P. minor (Supplementary Data Fig. S4C, D) and 
O. secunda (Supplementary Data Fig. S4E, F). For O. secunda, 
there was no difference in germination rate between GA3 concen-
trations on both media tested (Supplementary Data Fig. S4E, F),  
except after the first month on Knudson C (higher germin-
ation on the highest GA3 concentration; F3,15 = 7.94, P = 0.002; 
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Supplementary Data Fig. S4F). For P. minor, there was a weak 
stimulatory effect after the first month on BM-1 medium at the 
highest (1 mg L–1) GA3 concentration [χ2

(3) = 4.719, P = 0.002; 
Supplementary Data Fig. S4C].

Tested saccharides stimulated germination of seeds of both 
tested species. Pyrola minor was stimulated by all saccha-
rides, with sucrose being the best [χ2

(3) = 20.57, P = 0.0001; 
Fig.  4A], and the seeds cultivated without soluble saccha-
rides germinated very rarely. Orthilia secunda reached higher 
germination rates only on sucrose [χ2

(3)  =  16.34, P  =  0.001; 
Fig.  4B], while glucose and trehalose hardly enhanced ger-
mination. Seedling size was similarly affected by saccharides, 
with all saccharides acting on P. minor (Supplementary Data 
Figs S5A and S6A; F3,14 = 27.11, P = 4.32 × 10–6) and sucrose 
only on O. secunda (Supplementary Data Figs S5B and S6B; 
F3,16  =  9.57, P  =  0.00074). After three additional months of 
cultivation, seedlings from all saccharide-supplemented treat-
ments produced at least a few long roots, while those from 
saccharide-free cultures did not, indicating that trehalose and 
glucose were also partially utilized. Moreover, after cultiva-
tion for 1 year, the individual seedlings on media with glucose 
and trehalose showed significant growth (Supplementary Data 
Fig. S7).

Ontogenesis of seedlings

All species tested produced elongated seedlings of similar 
morphology (Fig.  3), irrespective of the medium. We used 
P. minor as a model species to analyse seedling development in 
detail. Like other pyroloids, P. minor has a minute seed with a few-
celled embryo surrounded by a cellular endosperm enclosed in a 
single-layered transparent testa with pitted cell walls (Fig. 5A). 
Histochemical tests indicate storage of lipids (Supplementary 
Data Fig. S8C, E) and proteins (Supplementary Data Fig. S8B, 
D) but not starch (Supplementary Data Fig.  S8A) in mature 
seeds. When germinated aseptically on media supplemented with 
soluble carbohydrate, germination starts with enlargement of the 
embryo at the micropylar pole (Fig.  5B) and with the forma-
tion of an apical meristematic area (in seedlings <0.5 mm long; 
Fig. 5F) that later forms into root meristem (Fig. 5G). The tran-
sition from embryo into growing root is fast, but gradual. Less 
organized tissue is produced during a short initial phase to form 
an ‘intermediary zone’ (Fig. 5C–H) that exhibits a heterogeneous 
surface cell pattern (Fig. 5D) and differentiates vascular tissues 
in its central part (Fig. 5G, H). In seedlings >0.5 mm long, typical 
root organization is achieved within the growing apex (Fig. 5G). 
The root produced includes a radial vascular bundle devoid of 
pith (mostly diarch), exarch xylem with protoxylem close to 
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the pericycle, suberized endodermis, and a root cap (Fig. 5I, J; 
Supplementary Data Fig. S8I, L).

Seedling establishment on sucrose-amended media is accom-
panied by gradual disappearance of lipids (Supplementary Data 
Fig.  S8C, F, J) and accumulation of starch (Supplementary 
Data Fig. S8F, H, K). Starch grains are located in cortical cells 
(Supplementary Data Fig.  S8H, I, K, L). High starch con-
tent was confirmed by HPLC analyses (Supplementary Data 
Table S3). Conversely, germination on media lacking carbohy-
drates terminated in the very initial phase, with very limited 
enlargement of the embryo even after 11 months of cultivation 
(Supplementary Data Fig. S8G).

The emerging root started to branch very early and produced an 
extensive root system (Fig. 6A), which initiates the first shoot bud 
much later (Fig. 6B). To observe the timing and positioning of the 
emergence of the first bud, we transferred seedlings individually 
(n = 16) to new Petri dishes soon after germination on sucrose-
amended BM-1 media. Seedlings produced their first buds at dif-
ferent times, starting 35 d after transplantation, and seven out of 
16 plants did not sprout after 6 months. The first shoot always 

sprouted a few millimetres away from the original position of 
the embryo, often at the nearest root branching (eight out of nine 
plants; Fig. 6C–E). Very often additional buds appeared approx. 
1–2 months after the first one, emerging along the root axis at sites 
of branching (Fig. 6D). One individual displayed seven sprouts 
after 6 months. The buds grew quickly into leafy shoots which 
became green when transferred to the light (Fig. 6F, G). Seedlings 
left in a small Petri dish with other seedlings grew much more 
slowly and did not form buds till the end of the experiment. We 
also successfully germinated branching Monotropa uniflora 
(n = 3; Supplementary Data Fig. S9A on BM-1 with activated 
charcoal; Supplementary Data Fig. S3A) from which one plant 
produced multiple buds within a dense nest-like root cluster after 
1 year of cultivation (Supplementary Data Fig. S9B).

In summary, germination was successful to the stage of 
green leaves in P. minor (Fig. 6F, G) and also in C. umbel-
lata, O. secunda, Moneses uniflora and P. media (not shown). 
The seedlings of P. minor were successfully transferred to ex 
vitro conditions, and cultivated for the next 6  months (not 
shown).

A B

C D

E F

Fig. 3. Representatives of in vitro grown seedlings of species used in this study. (A) Pyrola minor cultivated in the dark, (B) Pyrola minor cultivated in the light, 
and (C) Moneses uniflora, (D) Orthilia secunda, (E) Chimaphila umbellata and (F) Monotropa uniflora cultivated in the dark. Scale bars = 0.5 mm.
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DISCUSSION

We developed an efficient protocol for in vitro axenic sowing 
of pyroloids, which enabled us to germinate successfully repre-
sentatives of all pyroloid genera and a related mycoheterotroph 
Monotropa uniflora. This protocol allowed us to overcome prob-
lems with seed germination and seedling growth cessation that 
were previously reported. Germination is probably driven mostly 
by physical dormancy because gibberellins had little effect on 
germination, while intensive pre-treatment (chemical scarifi-
cation) of seeds greatly improved germination. This reliable 
protocol allowed us to produce seedlings in great number and 
to describe ontogenesis clearly, from early germination to leafy 
plantlets. In all cases, a tiny undifferentiated embryo produces an 
intermediary zone, which subsequently establishes a first root. 
Adventitious shoots grow later from this and secondary roots 
(Fig. 7, right). Our results suggest convergence in mixotrophic 
plants with dust-like seeds in regressive evolution leading to a 
single meristem that builds mycorrhizal tissue at germination.

Germination conditions

Gibberellic acid (GA3), which greatly stimulates germin-
ation of many plant species (Shu et al., 2016), had little effect 
on pyroloid germination. A strikingly similar situation occurs 
in minute orchid seeds, where gibberellins usually have little 
effect on seed germination (Arditti, 1967; Rasmussen, 1995), 

despite occasional reports of inhibition (Van Waes and Debergh, 
1986) or stimulation (Pedroza-Manrique et  al., 2005; Pierce 
and Cerabolini, 2011). Low sensitivity to gibberellins may be 
a general feature of dust-like seeds. The situation in orchids is 
sometimes explained by the absence of endosperm (Arditti and 
Ghani, 2000; Yeung, 2017), because the stimulation of germin-
ation by gibberellins is mostly connected to the induction of the 
expression of genes encoding enzymes hydrolysing the endo-
sperm (Groot and Karssen, 1987; Groot et al., 1988; Schuurink 
et al., 1992; Leubner-Metzger et al., 1996). Yet, since pyroloid 
seeds have a one-layered endosperm (Hofmeister, 1858; Fürth, 
1920; Christoph, 1921; Pyykkö, 1968), the low sensitivity to 
gibberellins of dust-like seeds may not be associated with the 
absence of endosperm but with other characteristics yet to be 
clarified.

The strong inhibitory effect of light on germination could 
serve as a protection against germination on the soil surface, 
where mycorrhizal fungi may not be present. A similar mech-
anism of light inhibition is well known in many terrestrial spe-
cies of orchids (Arditti, 1967, 2008; Rasmussen, 1995). We 
also found a strong effect of disinfection on seed germination. 
More intensive seed disinfection stimulated germination, and 
longer incubation in calcium hypochlorite solution after sul-
phuric acid treatment was often most effective. Similarly, 
Lihnell (1942) achieved the highest germination rate after the 
longest incubation in calcium hypochlorite solution, which he 
was unable to explain. Since these solutions also act corro-
sively to destroy the impermeable coats of dust-like seeds (e.g. 
Arditti, 1967; Rasmussen, 1995; Zeng et al., 2014), we pro-
pose that strong physical dormancy due to the testa explains 
the long pre-germination period and the low germination 
rates observed in situ (Hashimoto et al., 2012; Johansson and 
Eriksson, 2013; Hynson et al., 2013b; Johansson et al., 2017). 
After proper chemical scarification, we reached 100 % and 99 
% germination for P.  minor and O.  secunda seeds, respect-
ively, which is much higher than observed in situ (Hashimoto 
et  al., 2012; Hynson et  al., 2013b) or in vitro (Lück, 1940; 
Lihnell, 1942) in different species of the same genera. It is 
hard to discuss possible actions of disinfection agents on seeds 
in detail, because the chemical composition of pyroloid seeds 
is unknown. In orchids, seed coats seems to consist of lignin, 
lipids and other uncharacterized compounds (Barsberg et al., 
2013, 2018). Ethanol is a good solvent for many lipids and 
wax compounds, and it usually makes seeds less hydrophobic 
and more accessible for subsequent treatment with aqueous 
solutions. Lignin is highly sensitive to the oxidative effect 
of hypochlorite solutions, so we could expect disintegration 
of the seed coat during hypochlorite treatment. The effect of 
H2SO4 is hard to guess, but we could expect the existence of 
some other compound sensitive to acid hydrolysis, but not to 
alkaline hydrolysis.

Chimaphila umbellata and Moneses uniflora germinated 
at significantly lower rates compared with P.  minor and 
O.  secunda in our experiments. Since these two genera form 
a clade separate from that encompassing Pyrola and Orthilia 
(Freudenstein et al., 2016; Lallemand et al., 2016), some add-
itional dormancy mechanism may occur in this clade, which 
remains to be identified. In soils, dormancy, added to photoinhi-
bition, may increase the ability of the plant to wait for suitable 
fungi required for germination.
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Fig. 5. Germination and early development of Pyrola minor. (A) A mature seed with globular embryo. (B) Germination starts with enlargement of the embryo 
(arrows indicate the former embryo). (C) A seedling develops further into a root through the less organized intermediary zone with a very heterogenic surface 
cell pattern. (D) Detail of the cell surface pattern of the intermediary zone. (E) A seedling 1–1.5 mm in size with an already established root meristem. (F) The 
meristematic zone is established very early after germination. (G) A seedling <1 mm in size with an established meristem and differentiated vascular tissues in 
the central part of the intermediary zone close to the former embryo. (H) A seedling approx. 3 mm in size with an already established lateral root primordium 
(white arrow) and differentiated vascular tissues (in detail). (I) The root structure is obvious at 1.5 cm from the position of the former embryo in a 3 cm long 
seedling. Abbreviations: en, endodermis; x, protoxylem vessels of the radial vascular bundle; c, cortex; rh, rhizodermis. (J) The root tip of a 3 cm long seedling. 
Abbreviations: lrc, lateral root cap; p, protoderm; qc, quiescent centre. (A–E) whole mounts, DIC; (C) whole mount, confocal image; (D) whole mount, UV; (F–H) 
paraplast sections, Safranin O + Fast Green FCF; (I) hand section, UV; (J), paraplast section, Lugol + Orange G. Black arrows indicate the position of the former 

embryo; scale bars = 50 μm.
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Our in vitro methods provided seedlings in great number and 
shed light on the early development of pyroloids, with replicates 
for dissection to an extent that has never been reached before, 
allowing a clear discussion of early ontogenesis of pyroloids –  
assuming, of course, that our artificial, non-symbiotic condi-
tions do not alter ontogeny, as supported below.

Cultivation protocol

Based on our results, we propose a cultivation protocol 
that would allow germination of all pyroloids generally. This 

procedure uniquely combines different techniques used previ-
ously in orchid culture to satisfy the needs of pyroloids. Seed 
disinfection implies: 70 % ethanol for 5 min, washing three times 
with deionized water, then 2 % H2SO4 for 10 min, followed by 
Ca(OCl)2 solution for 10 min and washing three times with sterile 
deionized water. The best cultivation medium is BM-1, but DS 
and MoN also work well. For cultivation conditions, we recom-
mend 4 °C for 3 months after sowing, and subsequently 20 °C, in 
the dark. Seedlings can be transferred to the new medium when 
they are approx. 5 mm long. When shoots start to grow, seedlings 
should be transferred to the light and, at that time, it is better to 
place them separately into 100 mL cultivation jars.
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Fig. 6. Transition to shoot formation in P. minor seedlings. (A) Nine-month-old seedling with an established root system prior to the onset of shoot growth. (B) 
Nine-month-old seedling with an emerging shoot (arrow). (C) The shoot bud emerges at the first root branching site close to the position of the former embryo 
(r, root; sh, shoot bud; iz, intermediary zone connecting the former embryo; x, xylem), section stained with Safranin O and Fast Green FCF. (D) Later, additional 
shoot buds emerge along the root axis (arrows). (E) Detail of the first shoot bud, whole mount preparation. (F) Fully established in vitro plant. (G) Adventitious 

roots emerging at the stem node (sh, shoot). Scale bars = 0.5 cm, except (C) and (E) = 200 μm.
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Development of pyroloid seedlings

The dust seed structure with an undifferentiated globular 
embryo is typical for many mycoheterotrophic plants (Leake, 
1994) and plants with mycoheterotrophic early develop-
ment (Dearnaley et  al., 2016). Such dust seeds have limited 
reserves, the storage compounds of which are mostly un-
known. In pyroloids, previous studies found storage lipids and 
proteins in mature seeds (Fürth, 1920; Christoph, 1921; Lück, 
1940). Similarly, ripe seeds of orchids usually contain lipids 
and proteins (Harrison, 1977; Manning and Van Staden, 1987; 
Rasmussen, 1990; Richardson et al., 1992; Yam et al., 2002; Li 
et al., 2016), and few orchid species display starch in mature 
embryos (Tian and Wang, 1985; Guo and Xu, 1990; Yeung and 
Law, 1992). Our histochemical tests confirmed the presence of 
storage lipids and proteins, but the absence of starch in P. minor 
seeds, thus further amplifying the convergence with orchids.

During germination, lipids and storage proteins were uti-
lized, and seedlings shifted to use starch as the main storage 
compound, as confirmed by histochemistry and HPLC. This 
switch to starch had already been observed in several pyroloids 
(Christoph, 1921; Lück, 1940; Lihnell, 1942) and is common 
among orchids (Manning and Van Staden, 1987; Rasmussen, 
1990; Richardson et al., 1992). The transition from lipid and 
protein reserves in seeds to starch in seedlings therefore also 
convergently characterizes mycoheterotrophic germination.

Mycoheterotrophic pyroloid seedlings grow in vitro as 
branching roots for a long time before the first green shoot 
emerges. Such non-green seedlings grow below-ground in na-
ture very slowly, for an even longer time (Hashimoto et  al., 
2012; Johansson and Eriksson, 2013; Hynson et  al., 2013b; 
Johansson et  al., 2017). Seedling growth was also promoted 
by more complex cultivation media (e.g. BM-1, compared with 
Knudson C or MS), which could indicate dependency on some 

other organic compounds provided in nature by fungi. Complex 
media are also beneficial for many mixotrophic orchids 
(Rasmussen, 1995; Arditti, 2008).

Post-germination development differs from that of the 
orchids despite some parallels. Orchids form a protocorm dur-
ing germination whose enlargement establishes a shoot meri-
stem on its anterior pole (Burgeff, 1936; Leroux et al., 1997; 
Yeung, 2017). In pyroloids, germination starts with enlarge-
ment of the embryo at the suspensor pole, which develops into 
a small elongated structure growing apically – the ‘cone sta-
dium’ of Lück (1941) and Lihnell (1942). Soon after, the apical 
region establishes a root meristem and grows into a typical root. 
Although the transition is pretty fast, a short region (approx. 
0.5 mm) close to the former embryo exhibits a slightly different 
internal structure (Fig. 7), which is why we call this part the 
‘intermediary zone’ (see discussion below).

The first root grows and establishes lateral roots to de-
velop an extensively branched root system as also observed 
in situ (Irmish, 1855; Velenovsky, 1892, 1905; Bobrov, 2009; 
Hashimoto et al., 2012). For a long time, it was unclear whether 
these structures are true roots (see Goebel, 1900; Lihnell, 1942). 
Velenovský (1892, 1905) suggested that these are ‘neither root 
nor stem’. We clearly show a typical root organization (includ-
ing the root cap, the endogenous origin of lateral roots and radial 
vascular bundle; Fig. 5H–J), as concluded in earlier anatomical 
studies (Lihnell, 1942; Copeland, 1947). The above-mentioned 
discussions probably arose because of insufficient anatomical 
examination and confusion between the intermediary zone and 
the true roots. As in the observations of Velenovský (1905) and 
Lihnell (1942) and of adult roots (Hynson, 2009), the roots 
observed had no root hairs. Our data clearly show that the first 
shoot sprouts from a small section between the original position 
of the embryo and the first root branching site. Shortly after, 
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Fig. 7. Comparison of germination and subsequent development of orchids (left) and pyroloids (right). The embryo is highlighted in red, the protocorm in blue, 
shoots in green and roots in brown. Abbreviations: a, adventive root; br, branching roots; e, embryo; end, endosperm; h, hilum; iz, intermediary zone; p, protocorm; 

ram, root meristem; sh, shoot; sam, shoot meristem; t, testa; x, xylem. The thin bar is 100 μm, the dotted bar is 1 mm and the thick bar is 0.5 cm.
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other adventitious shoots usually emerge from other parts of the 
root system. Such root sprouting also exists in adult pyroloids 
in natural conditions (Copeland, 1947; Klimešová, 2007).

Is the intermediary zone a protocorm?

Typical plant embryos develop from both radicle (basal 
pole establishing the primary root) and plumule (apical pole 
establishing the primary shoot) poles, while in pyroloids or 
orchids one embryo pole does not grow: the primary shoot or 
the primary root, respectively, is completely missing (Fig. 7). 
Other mycoheterotrophic species with dust seeds that have 
been investigated to date, Afrothismia hydra (Burmanniaceae; 
Imhof and Sainge, 2008) and the genus Voyria (Gentianaceae; 
Imhof, 2010; Imhof et al., 2013), also germinate by a single, 
basal (radicle) embryo pole. This independent loss of one meri-
stematic embryo pole in plants with dust-like seeds indicates 
some general selection pressure in mycoheterotrophic germi-
nations perhaps for several non-exclusive reasons: (1) the lim-
ited resources available cannot support two growth sites (Imhof 
and Sainge, 2008); and/or (2) the absence of a requirement for 
shoots and roots in mycoheterotrophy, since a single organ for 
interaction with the fungus is sufficient; and/or (3) the later 
mycorrhizal organ makes one embryo pole unable to differ-
entiate into a meristem. We therefore propose that transform-
ation of one embryo pole into mycorrhizal tissue is a necessary 
evolutionary step enabling reduction of seed reserves to a min-
imum of the production of a true dust-like seed structure.

It could be argued that plants cultivated in vitro exhibit dif-
ferent development from plants in nature. However, the seed-
lings observed by us fully fit those observed in situ (Irmish, 
1855; Velenovsky, 1892, 1905; Hashimoto et al., 2012; Hynson 
et al., 2013a; Johansson and Eriksson, 2013). In particular, the 
drawings and photographs in vitro by Christoph (1921), Lück 
(1940, 1941) and Lihnell (1942) reveal similar seedlings.

How should we classify the structure that develops between 
the undifferentiated globular embryo and the typical root? It 
starts with polarized growth at the suspensor pole of the embryo 
and continues with cell divisions in an emerging meristematic 
area at its apical part. Later, it becomes thick, with extremely 
heterogeneous large epidermal cells and a broad central area of 
vascular tissues, but without a typical root structure. We there-
fore called it the intermediary zone here. In previous studies, 
it was named a ‘root-like structure’ (Hashimoto et al., 2012), 
a ‘procaulom’ (Velenovsky, 1892, 1905) or a ‘protosoma’ 
(Bobrov, 2004, 2009, 2014). We believe that previous studies 
did not explore the anatomical structure in detail (an analysis 
now allowed by the number of seedlings provided by our culti-
vation methods) and therefore did not distinguish between the 
intermediary zone and the true roots. Moreover, previous stud-
ies analysed seedlings that were already much larger.

Orchids also display an intermediary transition stage between 
the globular embryo and the first shoot meristem that is larger 
than the pyroloid intermediary zone and is called a protocorm 
(Rasmussen, 1995; Yeung, 2017) because it precedes formation 
of the typical plant cormus (i.e. the first shoot or root). Since the 
intermediary zone of pyroloids also precedes the cormus (here, 
the first root), we also suggest use of the term protocorm for the 
intermediary zone of pyroloids. The term protocorm was first 

used for post-embryonic stages of clubmosses (Treub, 1890), 
which also form a mycoheterotrophic structure appearing be-
fore formation of the first shoot and root. This term was later 
transferred to orchids (Bernard, 1909) and it is thus historic-
ally not orchid limited, but is actually providing a name for a 
convergently evolved structure. Recently, protocorm was even 
used in the obligately parasitic Rafflesiaceae, for an endophytic 
structure developing from proembryonic endophytic tissue be-
fore the formation of the flower-bearing shoot (Nikolov et al., 
2014; Nikolov and Davis, 2017). Interestingly, Harley (1959) 
also suggested the term protocorm for seedlings of Monotropa, 
which are closely related to pyroloids. The pyroloid protocorm 
is significantly smaller and grows on the opposite embryo pole 
compared with orchids, but this transitory structure precedes 
the typical cormus in both types of mycoheterotrophic devel-
opment. Investigations of the early ontogenetic development of 
other unrelated mycoheterotrophic plants with dust seeds (e.g. 
Burmaniaceae, Gentianaceae and Triuridaceae; Eriksson and 
Kainulainen, 2011) are pending. Scarce studies have revealed 
that Afrothismia hydra (Burmanniaceae; Imhof and Sainge, 
2008) and Voyria spp. (Gentianaceae; Imhof, 2010, 2013) pro-
duce a root as the first organ, but nothing is known about initi-
ation of the root from the globular embryo in these plants.

Conclusion

We used a unique combination of cultivation techniques, 
which for the first time allowed us to develop an efficient cul-
tivation protocol to germinate and grow leafy plants of repre-
sentatives from all pyroloid genera. Our methods for pyroloid 
cultivation may be used for conservation purposes and for 
physiological investigations, since pyroloid mixotrophic nu-
trition in adulthood is currently of considerable interest (e.g. 
Lallemand et al., 2017). The cultures obtained allow fine analy-
ses of germination, with the transition from lipid and protein 
storage in seeds to starch accumulation, based on saccharides 
from the environment. Seedlings form first roots, before adven-
titious sprouting. The first root emerges from an intermediary 
zone (Fig. 7), which we suggest should be called a protocorm, 
due to its functional and developmental similarity to protocorms 
in other plants. Our data further support the many convergent 
traits in mycoheterotrophic germination and early development 
(especially the existence of a single meristem) in plants with 
dust seeds.

SUPPLEMENTARY DATA

Supplementary Data are available online at https://academic.
oup.com/aob and consist of the following. Table  S1: seed 
sources. Table S2: composition of cultivation media used in this 
study. Table S3: endogenous starch content revealed by HPLC 
analysis. Figure S1: higher and lower magnification showing 
a pyroloid seed with a well-developed embryo, sole seed coat, 
seeds with an undeveloped embryo and different stages of 
seedlings. Figure S2: effect of different media on germination 
rate of Pyrola minor, Moneses uniflora and Orthilia secunda 
seeds cultivated in vitro, 1, 2 and 3 month(s) after cold stratifi-
cation. Figure S3: effect of different media on germination rate 
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of Monotropa uniflora and Chimaphila umbellata seeds culti-
vated in vitro for 3 months after cold stratification. Figure S4: 
effect of light on seed germination of Pyrola minor and Orthilia 
secunda and effect of GA3 on seed germination of Pyrola minor 
cultivated in vitro on BM-1 or Knudson C medium and Orthilia 
secunda on BM-1 or Knudson C medium. Figure S5: effect of 
selected soluble saccharides on growth of Pyrola minor and 
Orthilia secunda. Figure  S6: effect of selected soluble sac-
charides on growth of Pyrola minor and Orthilia secunda. 
Figure S7: 1-year-old seedlings of Pyrola minor cultivated in 
vitro on Knudson C medium with glucose, sucrose or trehalose 
as the sole saccharide source or without any soluble saccharide. 
Figure  S8: Pyrola minor storage compounds. Figure  S9: 
Monotropa uniflora seedlings grown in vitro.
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